Spherical Units as Dynamic Consequential Regions

نویسندگان

  • Stephen Jose Hanson
  • Mark A. Gluck
چکیده

Spherical Units can be used to construct dynamic reconfigurable consequential regions, the geometric bases for Shepard's (1987) theory of stimulus generalization in animals and humans. We derive from Shepard's (1987) generalization theory a particular multi-layer network with dynamic (centers and radii) spherical regions which possesses a specific mass function (Cauchy). This learning model generalizes the configural-cue network model (Gluck & Bower 1988): (1) configural cues can be learned and do not require pre-wiring the power-set of cues, (2) Consequential regions are continuous rather than discrete and (3) Competition amoungst receptive fields is shown to be increased by the global extent of a particular mass function (Cauchy). We compare other common mass functions (Gaussian; used in models of Moody & Darken; 1989, Krushke, 1990) or just standard backpropogation networks with hyperplane/logistic hidden units showing that neither fare as well as models of human generalization and learning. 1 The Generalization Problem Given a favorable or unfavorable consequence, what should an organism assume about the contingent stimuli? If a moving shadow overhead appears prior to a hawk attack what should an organism assume about other moving shadows, their shapes and positions? If a dense food patch is occasioned by a particular density of certain kinds of shrubbery what should the organism assume about other shurbbery, vegetation or its spatial density? In an pattern recognition context, given a character of a certain shape, orientation, noise level etc.. has been recognized correctly what should the system assume about other shapes, orientations, noise levels it has yet to encounter? • Also a member of Cognitive Science Laboratory, Princeton University, Princeton, NJ 08544

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical Units as Dynamic Consequential Regions: Implications for Attention, Competition and Categorization

Spherical Units can be used to construct dynamic reconfigurable consequential regions, the geometric bases for Shepard's (1987) theory of stimulus generalization in animals and humans. We derive from Shepard's (1987) generalization theory a particular multi-layer network with dynamic (centers and radii) spherical regions which possesses a specific mass function (Cauchy). This learning model gen...

متن کامل

Bayesian generalization with circular consequential regions

Generalization – deciding whether to extend a property from one stimulus to another stimulus – is a fundamental problem faced by cognitive agents in many different settings. Shepard (1987) provided a mathematical analysis of generalization in terms of Bayesian inference over the regions of psychological space thatmight correspond to a givenproperty. Heproved that in the unidimensional case,wher...

متن کامل

Determination of the size distribution of monodesperse and bidisperse mixtures of spherical particles in the nanometer and submicron size range by applying cumulant analysis and contin algorithm in dynamic light scattering

Determination of particle size is one of the major needs in the industry and biotechnology. Dynamic light scattering (DLS) is a widely used technique for determining size distribution of spherical particle in nanometer and submicron size range. In this method, there are different algorithms for determining the size and size distribution of particles, which are selected according to the required...

متن کامل

Dynamic Coupled Thermo-Viscoelasticity of a Spherical Hollow Domain

The generalized coupled thermo-viscoelasticity of hollow sphere subjected to thermal symmetric shock load is presented in this paper. To overcome the infinite speed of thermal wave propagation, the Lord-Shulman theory is considered. Two coupled equations, namely, the radial equation of motion and the energy equation of a hollow sphere are obtained in dimensionless form. Resulting equations are ...

متن کامل

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1990